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ABSTRACT 

 
High performance and cost-effective ferry boats are of capital interest for customers 
and marine industry companies. On the other hands, the traditional ferry boats, 
which are operated by diesel generators, spatter the atmosphere with CO2 emissions 
and detrimental particles. Hence, more-electric technology revolution in marine 
applications, especially in ferry vessel systems, has gained a lot of attention during 
the last decade as a promising technology to decrease fuel consumption and 
emissions. However, one of the main issues in the electric ferry (E-Ferry) is to keep 
the voltage and frequency within an acceptable range according to the large dynamic 
load fluctuations. In order to solve this issue, this paper presents a model predictive 
energy management based on a modified black hole algorithm (BHA) for the hybrid 
E-Ferry systems. Finally, to study the efficiency of our proposal, we run a real-time 
simulation using the d-space simulator and compare the effect of the prediction 
horizon on the system performance. 
 
© 2019 The Authors. Published by Elsevier Ltd. 
This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)  

1. Introduction 

The emission reduction imposed by the international 
marine organization (IMO) as well as the growing 
environmental concerns play a significant role in the marine 
industry’s approach to design environment-friendly marine 
power propulsion system solutions (M. D. A. Al-Falahi et al., 
2018; Gheisarnejad et al., 2019; Vafamand et al., 2019b). 
Furthermore, the fuel price fluctuations force the 
shipbuilding companies to explore technologically 
advanced and efficient solutions to decrease operational 
costs in the marine transportation industry (Shancita et al., 
2014). In consequence, by integrating different potential 
power generation sources (e.g. liquefied natural gas, solar 
energy, and energy storage devices), marine industry works 
on finding the best solution for emissions control and 

energy saving (Khooban et al., 2018; Vafamand et al., 
2019a).  
   Hybrid power sources-based marine vessel systems are 
boat systems where the energy demand is satisfied by a 
mixture of diesel power engines, renewable sources like fuel 
cells, and batteries (Han et al., 2014). In the automotive 
industry, the concept of hybrid was proven successful and 
many vehicles have been commercialized. This means that 
CO2 emissions can be reduced significantly in real operating 
conditions. Given this achievement, hybrid-energy solutions 
is also applied in the maritime sector as a high technology 
tool to decrease emissions and fuel consumption (M. Al-
Falahi et al., 2018). Moreover, power recovery approaches 
are gradually being applied to marine vessel systems to 
enhance fuel efficiency. For instance, the system of waste 
heat recovery uses the exhausted fumes for electricity 
production to improve the main generator efficiency by 

Contents lists available at ScienceDirect 

Energy Reports 

journal homepage: www.elsevier.com/locate/egyr 

https://creativecommons.org/licenses/by-nc-nd/4.0/


2 Author name / Energy Reports 00 (2019) 000–000 

approximately 5%, hence significantly decreases emissions 
and the cost of fuel (Skjong et al., 2015). 
   In general, the complexity of hybridizing marine power 
grids (e.g. synchronization of each power source) can bring 
big challenges. Furthermore, AC vessel distribution power 
systems have disadvantages like reactive power flow, 
transformers inrush current, the imbalances of the three-
phase system, and harmonic currents (Zahedi et al., 2014). 
In contrast, a DC distribution ship system can deliver 
efficient electric energy by jointing alternating current and 
direct current energy supplies through power electronic 
circuits, which delivers energy flow to the load (Navid 
Vafamand et al., 2018b; Yousefizadeh et al., 2018a). 
Nevertheless, owing to non-linear characteristics and 
switching behavior of power electronic devices, the 
complexity of DC power systems has increased (N. 
Vafamand et al., 2018; Vafamand et al., 2019b). However, 
new advancements in power electronics converters make 
them more efficient and flexible, by which DC grids become 
feasible in different power applications. As a result, the 
utilization of a hybrid power system with a DC grid enables 
cooler integration of renewable energy sources and energy 
storage devices (Yousefizadeh et al., 2018b). Also, 
generation supplies synchronization is not needed which 
makes the prime movers possible to work at their optimal 
speeds and providing the fuel consumption and emissions 
reduction (M. D. A. Al-Falahi et al., 2018). Additionally, the 
mentioned advantages also provide additional benefits (e.g. 
saving the space and weight, flexible arrangement of 
equipment as well as reducing the noise from a conventional 
diesel power system) in the harbor. Besides, the integration 
of traditional maritime power plants with RESs and ESSs 
offers substantial cost and environmental benefits (M. D. A. 
Al-Falahi et al., 2018). Consequently, by adopting hybrid 
power systems with DC distribution, we can achieve many 
gains and benefits. 
   The optimal scheduling of marine power systems and 
electric loads (Boudjadar et al., 2016), which are considered 
as a power management system (PMS), is one of the 
significant issues in the hybrid marine grids (Kanellos et al., 
2016). Particularly, the well-planned function of a marine 
power grid in the generation side among with optimal 
scheduling of load demands are able to influence the 
efficiency of the plant. On top of everything else, for short-
run intervals, power energy management in hybrid marine 
systems plays a significant role in the coordination of 
controllable power units and electrical loads in a way to 
satisfy the requirements in the plant’s dynamic (Kanellos et 
al., 2016).  
   Up to now, many energy management algorithms with 
different power grid configurations have been suggested for 
power systems. For instance, a mixed-integer nonlinear 
programming (MINLP) algorithm is applied to optimize the 
energy management problem in shipboard microgrids 
(Kanellos et al., 2016). The particle swarm optimization 
algorithm is used to solve the problem. In (Anvari-

Moghaddam et al., 2016), the ship power system, which is 
equipped with solar panels and energy storage devices, is 
investigated for the economic operation of the whole of the 
system. The model-predictive control-based optimal energy 
management is applied in [18], [19]. In these papers, the 
optimization problem is formulated so that the minimum 
cost of operation is achieved. In order to enhance the 
computational efficiency, the real-time optimization 
problem is described as a simplified two-level optimization 
model. The examination of experimental ship information , 
from standard operation to shed light, on the potential for 
using batteries and optimization based unit commitment is 
presented in (Park et al., 2015). In [(Banaei and Alizadeh, 
2016)], the problem of solving optimum ESSs sizing is 
modeled as a two-layer optimization problem. In the first 
step, this paper finds the optimal power generation 
scheduling for a particular energy storage capacity. Then, 
the outer layer goes over all possible design configurations 
(storages capacities) and determines the net saving (saving 
minus cost) for each configuration. 
   In this paper, the problem of intelligent model predictive 
approach for energy management of a hybrid electric-ferry 
with several generators and batteries is investigated. The 
practical constraints on the maximum and minimum and the 
variation rate of power of generators and batteries are 
considered. To perform the energy management, a 
nonlinear optimization problem with a polynomial cost 
function and linear inequalities is presented and the 
problem is solved by a modified black hole algorithm (BHA). 
Real-time simulation results show the applicability of the 
suggested method in handling the highly varying load 
power. Also, it is shown that higher horizon prediction 
outperforms the energy management by properly charging 
and discharging the battery before and during sudden 
changes in the power demand. 
   The rest of the paper is organized as follows: In Section 1, 
the power management for the hybrid electric ferry is 
discussed. In Section 2, the nonlinear optimization problem 
is proposed. In Section 3, the black hole algorithm to solve 
the optimization problem is studied. In Section 4, the real-
time simulation results are provided. Finally, in Section 5, 
conclusion and future works are presented. 

2. Illustrations 

In general, a marine power system with fuel cell, diesel 
generator as main sources of the ship power, energy storage 
systems as a reservation unit, power electronic devices as 
interfaces for renewable energy systems, and loads like ship 
motor(s) and navigation system(s) can be considered as a  
special mobile islanded DC microgrid (see Fig. 1). 
   Minimizing the fuel consumption of several sources in the 
case study is the key target of the optimization problem. In 
this ship system, the powers of generators are assumed as 
the optimization parameters. The energy management of 
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the fuel cells causes reducing fuel consumption as well as 
emissions.  

 

Fig. 1. The scheme of a hybrid electric ferry grid. 

 

   This procedure confirms that at least one fuel cell works on 
the optimum operating condition as well as another 
renewable source operates in a high-efficiency zone. To 
achieve this objective, the energy storage device should on 
accurate scheduling during the entire path. Furthermore, 
turn off the renewable energy sources is another constraint 
where it can have a positive effect at a low demand in the 
reduction of the fuel consumption in marine power systems, 
in other words the fuel cells should only work in high load 
demands. As a result, the main objective function of energy 
management in this study can be formulated as follows: 

𝐹𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = ∑(𝑆𝐹𝑂𝐶𝑛(𝑡) × 𝑃𝑛(𝑡) × Δ𝑡)

𝑁

𝑛=1

 (1) 

where the fuel depletion of the ship shows with 𝑭𝑪𝒕𝒐𝒕𝒂𝒍(𝒕), 

while 𝑷𝒏(𝒕) is assumed to be the generated power by the 𝒏-

th energy supply at t-th time (KW). The step time of the 

system is considered as ∆𝒕. Besides, 𝒕 is a 𝒕-th time interval, 

𝑵  is the number of fuel cells. The particular fuel oil 

consumption of the 𝒏 -th energy sources is shown by 

𝑺𝑭𝑶𝑪𝒏(𝒕) and written as below: 

𝑆𝐹𝑂𝐶𝑛(𝑡) = [𝑎 (
𝑃𝑛(𝑡)

𝑃𝑛,𝑟𝑎𝑡𝑒𝑑

)

2

− 𝑏 (
𝑃𝑛(𝑡)

𝑃𝑛,𝑟𝑎𝑡𝑒𝑑

) + 𝑐] (2) 

where the rated power of the energy unit is represented by 

𝑷𝒏,𝒓𝒂𝒕𝒆𝒅. Moreover, the parameters 𝒂, 𝒃, and 𝒄 are assumed 

as the SFOC equation. 

   In order to monitor the output of energy units, three kinds 
of constraints are assumed as follows: 
1) the limitations exist in the energy source units  
2) the constraints related to the generator ramp rate  
(3) basic bounds for the output power of generator units 
that should be within a specific range.  
   The other constraint, generator ramp rate constraint, does 

not allow very sharp changes in the output power of the 

generator by defining the maximum allowable ramp rate. 

Moreover, this point is important that the variations of 

𝑷𝒏(𝒕) is represented by (4) in a discrete simulation,  

𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛(𝑡) ≤ 𝑃𝑛

𝑀𝑎𝑥  (3) 

|
𝑃𝑛(𝑡) − 𝑃𝑛(𝑡 − 1)

Δ𝑡
| < 𝑅𝑖  (4) 

   The maximum and minimum acceptable stored power in 
the batteries is the only constraint, which is assumed in this 
optimization problem. Hence, in (5), this battery constraint 
is represented as:  

𝐸𝑚𝑖𝑛 ≤ 𝐸(𝑛) ≤ 𝐸𝑀𝑎𝑥  (5) 

   Dynamic equations are necessitated for each dynamic 
optimization problem. Similar to other optimization 
problems, this study uses equation (6) as the dynamics of 
the understudy system. Generally, dynamic equations 
introduce the relationship between the system states at 
each time to the earlier state(s). The applied dynamic 
equation in this paper is based on the stored power of the 
battery at the end of the current time step. In other words, 
the energy at the previous time step plus the alteration 
between the overall power generation and the demanded 
loads, which are multiplied by the time step length, is equal 
to the stored power of the battery at the end of the current 
time step. 

𝐸(𝑛) = 𝐸(𝑛 − 1) + Δ𝑡 × [∑(𝑃𝑛(𝑡)) − 𝑃𝐿(𝑡)

𝑁

𝑛=1

] (6) 

where the load power is defined by 𝑷𝑳(𝒕). 

3. Nonlinear Model Predictive Control Approach 

   The objective function defined in (1) is based on fuel 
consumption at time 𝒕. If it is minimized, the consumption of 
fuel without considering the future behavior of the load 
demand will be reduced. However, if the load demand 
changes faster than the variation power rate of the 
generators, then the optimization problem degrades. 
Thereby, it is necessary to involve the future behavior of the 
load profile to improve the energy management especially 
when the load varies roughly. It is shown that the model 
predictive method outperforms the other approaches from 
the cost function minimization viewpoint (Mardani et al., 
2018; Navid Vafamand et al., 2018a; Vafamand et al., n.d.; 
Vafamand and Khayatian, 2018).  
   Based on the above-mentioned reasoning, the following 
optimization problem is suggested: 
   For the given generator powers 𝑷𝒏(𝒕𝒌 − 𝟏), battery power 

𝑬(𝒕𝒌 − 𝟏) at 𝒕 = 𝒕𝒌 − 𝟏, and the future power demand 𝑷𝑳(𝒕) 

for 𝒕𝒌 ≤ 𝒕 ≤ 𝒕𝒌 + 𝑻 , we define the following optimization 

problem 

min
𝑃𝑛(𝑡)  𝑓𝑜𝑟   𝑡𝑘≤𝑡<𝑡𝑘+𝑇

𝛾 (7) 

Subject to 

∑ ∑(𝑆𝐹𝑂𝐶𝑛(𝑡) × 𝑃𝑛(𝑡) × Δ𝑡)

𝑁

𝑛=1

𝑡𝑘+𝑇

𝑡=𝑡𝑘

< 𝛾 (8) 
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and for 𝒕𝒌 ≤ 𝒕 < 𝒕𝒌 + 𝑻, 

𝑃𝑛
𝑚𝑖𝑛 ≤ 𝑃𝑛(𝑡) ≤ 𝑃𝑛

𝑀𝑎𝑥  (9) 

−Δ𝑡𝑅𝑖 ≤ 𝑃𝑛(𝑡) − 𝑃𝑛(𝑡 − 1) ≤ Δ𝑡𝑅𝑖  (10) 

𝐸𝑚𝑖𝑛 ≤ 𝐸(𝑡) ≤ 𝐸𝑀𝑎𝑥  (11) 

𝐸(𝑡) = 𝐸(𝑡 − 1) + Δ𝑡 [∑(𝑃𝑛(𝑡)) − 𝑃𝐿(𝑡)

𝑁

𝑛=1

] (12) 

Then, the generators’ powers 𝑷𝒏(𝒕)  for 𝒕𝒌 ≤ 𝒕 < 𝒕𝒌 + 𝑻  is 

obtained. 

4. Black Hole Optimization 

In general, the black hole algorithm (BHA) is a population-
based algorithm. The main concept of a BHA is simply an 
area of space that has huge mass centralized in it where 
there is no path for a close object to flee its gravitational pull. 
The formal movement of stars towards the black hole can be 
described as follows (Hatamlou, 2013; Khooban et al., 
2018): 

𝑋𝑚,   𝑛𝑒𝑤
𝑖𝑡𝑒𝑟 = 𝑋𝑚

𝑖𝑡𝑒𝑟 + 𝑟𝑎𝑛𝑑(. )(𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟 − 𝑋𝑚
𝑖𝑡𝑒𝑟);       𝑚

= 1, . . . , 𝑁𝑃𝑜𝑝 
(13) 

where 𝑋𝑚
𝑖𝑡𝑒𝑟  presents the target position, while 𝑋𝑚,   𝑛𝑒𝑤

𝑖𝑡𝑒𝑟  

shows the updated agent in iteration 𝑖𝑡𝑒𝑟 . Furthermore, 
𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟  denotes the best solution. More information about 
the formulation and structure of the BHA is discussed in 
(Khooban et al., 2018).  

In order to improve the exploration properties of the 
BHA, a new approach is applied to the collapsing process. In 
the first step, a new updating mechanism for the modified 
BHA design process is presented as follows: 

𝑋𝑚,   𝑛𝑒𝑤
𝑖𝑡𝑒𝑟 =  𝑋𝑚

𝑖𝑡𝑒𝑟 + 𝑟𝑎𝑛𝑑1(. )(𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟 − 𝑋𝑚
𝑖𝑡𝑒𝑟)

+ 𝑟𝑎𝑛𝑑2(. )(𝑋𝑟
𝑖𝑡𝑒𝑟 − 𝑋𝑚

𝑖𝑡𝑒𝑟) 
(14) 

where 𝑟 ∈  [1, 𝑁𝑃𝑜𝑝]  and ( 𝑟 ≠ 𝑚).  In the following, for 

improving the optimal utilization of data, which is acquired 
by the members of the population in producing new 
candidates, the Absorption Capacity is applied for the 
utilized optimization algorithm. In this regard, a 
modification should be conducted for the event horizon 
𝑅𝑖𝑡𝑒𝑟  based on distribution and collection of stars, as: 

𝑅𝑚,   𝑀𝑒𝑎𝑛
𝑖𝑡𝑒𝑟 = ‖𝑋𝑚,   𝑛𝑒𝑤

𝑖𝑡𝑒𝑟 − 𝑀𝑒𝑎𝑛𝑖𝑡𝑒𝑟‖;     𝑚

= 1, . . . , 𝑁𝑃𝑜𝑝 

(15) 
 
 
 
 

𝑅𝑖𝑡𝑒𝑟 = 0.1 ∑
𝑅𝑚,   𝑀𝑒𝑎𝑛

𝑖𝑡𝑒𝑟

𝑁𝑃𝑜𝑝

𝑁𝑃𝑜𝑝

𝑚=1

 (16) 

where 𝑀𝑒𝑎𝑛𝑖𝑡𝑒𝑟  is the mean population vector in the 
iteration. If the difference value between each of 𝑋𝑚,   𝑛𝑒𝑤

𝑖𝑡𝑒𝑟  

and 𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟  is less than 𝑅𝑖𝑡𝑒𝑟 , then the corresponding 
solution is replaced by a new randomly created one. By 
using the modification (16), the event horizon is able to 
control the number of collapsed stars as well as avoid the 
high scattering of the best solution. So, (17) and (18) are 
used to overcome the mentioned difficulty. 

𝑋𝑚,   𝑛𝑒𝑤
𝑖𝑡𝑒𝑟 = 𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟 +

𝑚𝑎𝑥
𝑚

𝑅𝑚,   𝐵𝑒𝑠𝑡
𝑖𝑡𝑒𝑟

𝑁
(2𝑟𝑎𝑛𝑑(1, 𝑁) − 1) (17) 

𝑅𝑚,   𝐵𝑒𝑠𝑡
𝑖𝑡𝑒𝑟 = ‖𝑋𝑚,   𝑛𝑒𝑤

𝑖𝑡𝑒𝑟 − 𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟‖;     𝑚

= 1, . . . , 𝑁𝑃𝑜𝑝 
(18) 

Based on the above explanations, the main steps of the 
modified BHA are presented in Table I. 

 
Table I: The application of the modified BHA for the model predictive 
energy management. 

1. Augment the unknown powers 𝑃𝑛(𝑡)  𝑓𝑜𝑟   𝑡𝑘 ≤ 𝑡 < 𝑡𝑘 + 𝑇  in the 
vector 𝑋∗ = [𝑃1,1  𝑃1,2 … 𝑃1,𝑇  𝑃2,1  𝑃2,2 … 𝑃2,𝑇]. 

2. Initialize a population of 𝑁𝑃𝑜𝑝  stars 𝑋𝑚
𝑖𝑡𝑒𝑟|

𝑖𝑡𝑒𝑟=1
 with random 

locations in the search space. 
Loop 

3. For each star 𝑋𝑚
𝑖𝑡𝑒𝑟, evaluate the objective function (8). 

4. Select the corresponding star that provides the least objective 
function value as the black hole (i.e. 𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟). 

5. Change the location of each star based on the modified updating 
law (13).  

6. If a star reaches a location with a lower cost than the black hole, 
exchange their locations. 

7. If the distance of a star to the black hole is less than (16), that star 
replaced by a new one based on (17). 

8. If a termination criterion (a maximum number of iterations or a 
sufficiently good fitness) is met, exit the loop. 

End loop 
9. The optimum solution is 𝑋∗ = 𝐵𝑒𝑠𝑡𝑖𝑡𝑒𝑟|

𝑖𝑡𝑒𝑟=𝑒𝑛𝑑
. 

5. Real-Time Simulation Results 

In this section, the proposed approach is applied to a 
hybrid ferry grid with two diesel engines and one battery. 
The parameters of the generators and energy storage unit 
are provided in Table II. Also, the ramp rate constraint of 
both generators is assumed to be a maximum ramp rate of 
30% per minute, as (Mashayekh et al., 2012) 

(
Δ𝑃𝑛(𝑡)

Δ𝑡
) ≤ 0.3𝑃𝑛,𝑟𝑎𝑡𝑒𝑑 (

𝐾𝑊

min
) (19) 

 
Table II: The parameters of the generators and the battery. 

Generator 1 Generator 2 

𝑎 0.1691 𝑎 0.1591 
𝑏 −0.2924 𝑏 0.2473 
𝑐 0.3929 𝑐 0.3507 

𝑃𝑛
𝑚𝑖𝑛 20 𝐾𝑊 𝑃𝑛

𝑚𝑖𝑛 10 𝐾𝑊 
𝑃𝑛

𝑚𝑎𝑥 320 𝐾𝑊 𝑃𝑛
𝑚𝑎𝑥 280 𝐾𝑊 

Battery Load 

𝑃𝑟𝑎𝑡𝑒𝑑 165 𝐾𝑊 𝑃𝐿
𝑀𝑎𝑥 640 𝐾𝑊 

𝐸𝐵
𝑚𝑖𝑛 15 𝐾𝑊 𝑃𝐿

𝑎𝑣𝑒 320 𝐾𝑊 

𝐸𝐵
𝑚𝑖𝑛 150 𝐾𝑊 𝑃𝐿

𝑀𝑖𝑛 67 𝐾𝑊 

 
The SFOC of each generator based on its normalized 

generated power is presented in Fig. 2. As can be seen in Fig. 
2, the least SFOC for the generators 1 and 2 can be obtained 
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as the 𝑃1(𝑛)/𝑃1,𝑟𝑎𝑡𝑒𝑑 = 0.8646  and 𝑃2(𝑛)/𝑃2,𝑟𝑎𝑡𝑒𝑑 = 0.6832 , 

respectively. However, for the non-optimum points of the 
SFOC, for which less power than its optimum value is 
generated, the overall fuel consumption cost can be reduced. 
So, by incorporating the battery, the optimization problem 
may choose the best power that is not equal to that of the 
optimum value of the SFOC.  

The load demand profile is shown in Fig. 3. As can be seen 
in Fig. 3, the considered load profile has smooth and rough 
power changes. 

 

 
Fig. 2: The SFOC of each generator. 

 

The simulation is performed based on the parameters 
given in Table II, the rate constraint (19), and the load 
demand profile provided in Fig. 3. Furthermore, it is 
assumed that the battery is initially charged by 20 𝐾𝑊. For 
the real-time simulations, the dSPACE 1202 board has been 
selected as the rapid prototyping solution. More details can 
be found in (Vafamand et al., 2019b). To show the merits of 
the proposed approach, two prediction horizons 𝑇 = 3 and 
𝑁 = 10  are considered, and the optimization problem is 
performed for every one minute.  

 

 
Fig. 3: Power load profile of the hybrid ferry. 

 

 
Fig. 4. (a): The prediction horizon 10. (b): The prediction horizon 3.  
 

As can be seen in Fig. 4, the proposed approach with 
horizon 10 is able to feed the demanded load for all time 
points. However, by choosing the prediction horizon 3, the 
generated power is not sufficient in the time interval 𝑡 ∈
[10 16] 𝑚𝑖𝑛 . The reason is that the total power of the 
generators 1 and 2 is not enough and it is needed that the 
battery is fully charged before the high demand load. Since 
the optimization algorithm with the prediction horizon 10 
senses the high demand 10 mins before it occurs, the battery 
is smoothly charged to its maximum value. However, the 
optimization algorithm with prediction horizon 3 only 
senses the high demand 3 mins before it occurs and because 
of the constraint on the power generation rate, the battery 
is not fully charged. Consequently, when the load is 
increased, the ferry experiences lack of power for a short 
period of time. This fact shows the importance of 
considering predictive approaches to predict the future 
behavior of the load profile and use such information in the 
optimization problem. 

6. Conclusion 

The main target in this research was to introduce an efficient 
and cost-effective energy management algorithm for all-
electric ferry ships. In order to achieve the key goal, a new 
intelligent model predictive energy management was 
presented. Moreover, an improved heuristic optimization 
algorithm, the so-called Black Hole, was applied to tune the 
unknown variables of the model predictive control 
approach. The assumed cost function in this study was 
based on reducing fuel consumption as well as decreasing 
emissions. Finally, simulation results showed that the 
proposed method can effectively reduce fuel consumption 
as well as increase the performance of the whole of the 
electric ferry vessel. For future works, other renewable 
energy sources can be considered in the energy 
management system of the ferry ship. Moreover, the optimal 
sizing and placing of the energy storage systems among with 
renewable energy units can be formulated in the 
optimization problem. 
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